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Scattering Solution of Three-Dimensional Array of
Patches Using the Recursive T-Matrix Algorithms

Levent Giirel, Member, IEEE, and Weng Cho Chew, Senior Member, IEEE

Abstract—The recursive T-matrix algorithms are used to solve
for the vector electromagnetic scattering problem of a three-
dimensional array of patches. The formulation uses only the
E,. and E, components of the electromagnetic field wherein
the three-dimensional scalar addition theorem can be used. The
coefficients for the scalar addition theorem is calculated with
an efficient recurrence relation. This results in reduced memory
requirement and computation time. When the addition theorem
is violated, a generalized recursive T-matrix algorithm is used
to mitigate the problem caused by the violation of the addition
theorem. The scattering solutions are validated by comparison
with the method of moments and the reduced computational
complexity of the solution is demonstrated.

1. INTRODUCTION

ECENTLY, we have developed recursive T-matrix

algorithms (RTMA’s) using translation formulas [1]-{6].
These algorithms have reduced computational complexity
compared to conventional solution techniques. They have
been demonstrated to work efficiently for calculating two-
dimensional scattering solutions for both transverse-magnetic
(TM) and transverse-electric (TE) polarizations. However,
they were not demonstrated for three-dimensional vector
electromagnetic scattering problems.

In this letter, we show for the first time the use of such
algorithms to solve three-dimensional vector electromagnetic
scattering problems involving three-dimensional scatterers [7].
To save computer memory, the problem is formulated using
only the £, and E, components of the electromagnetic field.
In implementing the recursive algorithms in three dimensions,
the corresponding addition theorem is needed. Since E, and
E, satisty the scalar wave equation, the scalar addition theo-
rem can be used. Recently, we have developed a recurrence
relation to efficiently calculate the coefficients of the scalar
addition theorem in three-dimensions [8]. Such recurrence
relations will be used in the calculation of the scalar addition
theorem needed for the translation formulas.
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The solutions are validated by comparison with the method
of moments (MOM) [9] and the computation times are com-
pared. The recursive algorithms are shown to have reduced
computational complexity.

II. FORMULATION

Since the x and y components of the electric field will
be used to represent the electromagnetic fields, following the
standard T-matrix notation [5]-[7], the incident field can be
expressed as

siio= (0] =[5 wio] (2]
= RgP'(r) -e. )

When N scatterers are present, the scattered field can be
expressed as

Bi(r) = [gggﬂ = i_vf ek ap;?n)] ' Hy ]
= f:fit('ri) I @

In this equation, ¥ (r;) is a column vector containing the scalar
spherical harmonics for outgoing waves that involves spherical
Hankel functions. The prefix “Rg” implies the “regular part,”
hence, Rgv(r) contains spherical harmonics for standing
waves which involve spherical Bessel functions. The position
vector r; originates from the center of the ith scatterer.
Then, T matrices, which relate the scattered-field coeffi-
cients to the incident-field coefficients, are defined for each
f Y Ty

scatterer via the relation
=i ) (% a) [z
ol LTy Tiwy 0 Bl ley
= Tz(N) M /81,0 -e (3)

il

so that the scattered field can be expressed in terms of these
T matrices, i.e.,

N
—4 _ _
Ef(’l‘) = ZW (’I'z) 'Ti(N) . /HiO €. (4)
2=1
In (3) and (4), one T-matrix is defined for each scatterer, i.e.,
the subscript ¢ denotes the ¢th scatterer. The parenthesized N
in the subscript is an “environment parameter,” which denotes
the presence of N scatterers in the geometry when T’y is
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Fig. 1. (a) An Ey-polarized plane wave incident on a three-dimensional
clustering of identical square patches with dimension kw = 1.0 and spacing
kd = 2.0. The angles of incidence are ¢ = 0 and § = 45°. (b) RCS plots on
the ¢ = 0 cut due to the 3 X 3 x 3 array configuration of three-dimensional
clustering of patches as in (a).

defined. The translation matrix (3;p for scalar spherical har-
monics is derivable from the scalar addition addition theorem
whose elements can be efficiently calculated [8].

A recursive T-matrix algorithm (RTMA) has been previ-
ously derived [1], [3] to unravel recursively the N-scatterer
solution from a one-scatterer solution. That is, T,(x) - B0 can
be found recursively from Ti(1), the isolated-scatterer T-matrix
of one scatterer. The isolated-scatterer T-matrix can be found
via the method described earlier [6], [7].

Alternatively, using the addition theorem, (4) can be written
as

EZ(r) =¥'(r) - 7w - e, (5)
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Fig. 2. Comparisons of the computation times required by the épplications of
the MOM, the RTMA and the RATMA to the three-dimensional clusterings
of patches.

where
N .
TNy = Zﬂm‘ Ty * Bio (6)
= ‘

is an aggregate T-matrix for N scatterers. The translation
matrix Bo; shifts the coordinate of the sth scatterer to that of
a global coordinate whose position vector is r. A recursive
aggregate-T-matrix algorithm (RATMA) has been derived
such that 7 can be computed from the one-scatterer solution
[41, I5).

When the addition theorem is violated, the corresponding
generalized recursive algorithms [10], [11] have also been
developed to derive the N-scatterer solution from the one-
scatterer solution.

II1. NUMERICAL RESULTS

A computer program has been developed using these recur-
sive algorithms for computing the wave scattering solution of
a three-dimensional array of patches as shown in Fig. 1(a).

" These arrays, for instance, have applications in frequency-

selective surfaces and artificial dielectrics. However, the goal
of this letter is to illustrate that the RTMA’s can solve
this class of three-dimensional vector problems with reduced
computational complexity. For a three-dimensional clustering
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of the scaiterers, the computational complexity of the RTMA
is O(N®/3) while that for the RATMA is O(N7/3) [7]. A
direct matrix inversion would have O(N?®) complexity.

Fig. 1(b) shows the radar-cross-section (RCS) plots on the
¢ = 0 cut (z-z plane) due to a 3 X 3 x 3 array configuration of
three-dimensional clustering of patches shown in Fig. 1(a). A
plane wave, whose electric field is polarized in the y direction,
is incident on the structure at ¢ = 0 and # = 45°. The patches
are identical and square in shape with size kw = 1.0 and
spacing kd = 2.0 in all of the z, y, and 2z directions. It is
seen that the RTMA’s provide solutions that compare very
well with those obtained using the MOM.

In Fig. 2, we present the matrix-solution, matrix-fill, and
total computation times required by the applications of the
MOM, the RTMA, and the RATMA to the three-dimensional
clustering of patches shown in Fig. 1. We observe that, for
large N, the RATMA has the smallest slope, whereas the
MOM has the largest slope in the matrix-solution times, in
agreement with the predicted computational complexities of
the algorithms. The order of the slopes for the matrix-fill times
is just the reverse, i.e., the RATMA has the largest slope, and
the MOM has the smallest slope. However, for larger IV, the
matrix-solution time will be more dominant than the matrix-fill
time. Indeed, Fig. 2 shows that the total computation time of
the RATMA is starting to be dominated by the matrix-solution
time at the last data point (N = 200), whereas the total times
of the MOM and RTMA are still dominated by the matrix-fill
time.

IV. CONCLUSION

The recursive T-matrix algorithms have been shown to be
applicable to three-dimensional vector electromagnetic scat-
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tering problem. The RTMA’s are shown to agree well with
the MOM and, furthermore, they have reduced computational
complexities compared to the MOM followed by a Gauss-
ian elimination. Unlike the conjugate-gradient method, the
RTMA’s provide solutions that are valid for all angles of
incidence.
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